首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1753篇
  免费   470篇
  国内免费   408篇
测绘学   20篇
大气科学   3篇
地球物理   641篇
地质学   1414篇
海洋学   146篇
天文学   244篇
综合类   61篇
自然地理   102篇
  2024年   8篇
  2023年   31篇
  2022年   52篇
  2021年   74篇
  2020年   60篇
  2019年   81篇
  2018年   56篇
  2017年   58篇
  2016年   62篇
  2015年   51篇
  2014年   109篇
  2013年   146篇
  2012年   62篇
  2011年   117篇
  2010年   93篇
  2009年   130篇
  2008年   166篇
  2007年   151篇
  2006年   106篇
  2005年   94篇
  2004年   89篇
  2003年   82篇
  2002年   70篇
  2001年   61篇
  2000年   72篇
  1999年   79篇
  1998年   59篇
  1997年   55篇
  1996年   57篇
  1995年   47篇
  1994年   45篇
  1993年   30篇
  1992年   31篇
  1991年   24篇
  1990年   32篇
  1989年   20篇
  1988年   23篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1978年   6篇
  1977年   1篇
  1954年   3篇
排序方式: 共有2631条查询结果,搜索用时 15 毫秒
1.
2.
基于采自冲绳海槽中部的CS2站柱状沉积物黏土矿物和AMS14C年代分析,探讨了末次冰消期以来冲绳海槽中部黏土矿物的物质来源及其环境指示意义。结果显示,CS2站黏土矿物以伊利石为主,其次为绿泥石,高岭石和蒙脱石含量较少。根据黏土矿物分布趋势变化,CS2站柱状沉积物可划分为3个阶段:阶段(I 19~12 ka BP)和阶段Ⅱ (12~8 ka BP)期间沉积物主要来源于长江,台湾和黄河物质也有一定影响,其物质来源主要受海平面升降的控制;阶段Ⅲ(8~0 ka BP)主要来源于长江和台湾,黄河贡献有限,主要受黑潮演化的影响。CS2站(蒙脱石+高岭石) (/伊利石+绿泥石)比值可以作为东亚季风演化的矿物学指标,指标变化显示出东亚冬季风强度相对夏季风的强度在16.4~14.8 ka BP和12.8~11.6 ka BP期间有两次显著的加强,指示当时气候相对寒冷干燥,结果可以与格陵兰冰心δ18O和三宝洞δ18O记录等很好对比。  相似文献   
3.
作为矿物学的重要基础研究方向之一,新矿物的发现及其晶体结构、晶体化学的研究始终备受各发达国家的一贯重视。新矿物的研究和发现及其成果具有国际性,在一定程度上反映了国家在该领域以及整体科技水平和对科学发现的贡献。笔者近年来参与了对若干存疑矿物进行的精细晶体结构与晶体化学研究和矿物学研究,从2005年至今参与发现的23种新矿物均获得国际矿物学协会新矿物及分类命名委员会(IMA-CNMNC)所批准。这些新矿物的获批得益于成功地获取了成分数据、衍射数据和晶体结构的阐明。本文就新矿物的认定规则、申报内容和数据、分类命名、研究内容及工作方法等进行综述,在此抛砖引玉,希望通过交流促进我国新矿物研究领域的发展。  相似文献   
4.
粤北诸广和贵东是华南最重要的两个花岗型铀矿密集区,青嶂山(龙源坝)岩体位于两者之间,是华南花岗岩型铀矿研究薄弱地区。江头铀矿区地处青嶂山岩体北部与南雄断陷盆地的结合部位,该矿区的铀成矿年代学研究几为空白。本文通过电子探针方法研究了青嶂山岩体、及与该岩体密切相关的江头矿区中的铀矿物微区矿物学特征,获得岩浆成因的晶质铀矿与热液成因的沥青铀矿的U-Th-Pb化学年龄,探讨了华南铀成矿作用动力学背景及成矿地质体。研究表明:青嶂山岩体粗粒斑状黑云母花岗岩和中粒斑状黑云母花岗岩中的铀矿物主要有晶质铀矿、铀石,部分晶质铀矿存在明显铀释放的特征,其晶质铀矿化学年龄分别为246.8±8.8Ma、161.5±8.0Ma,与前人获得的锆石U-Pb年龄结果在误差范围内一致,分别代表了区内印支期与燕山期花岗岩体的成岩年龄,表明在南雄断陷盆地形成之前,青嶂山岩体与诸广岩体可能为一有机整体,有着相同的成岩、成矿环境。江头矿区矿石中铀矿物主要为沥青铀矿,伴有少量钛铀矿、铀石等,沥青铀矿化学年龄分别为121.3±9.8Ma、98.8±8.0Ma、73.2±8.8Ma,分别代表区内3期铀成矿作用的时代,结合华南中生代以来构造运动特征,认为区内铀成矿作用是受中-新生代盆地边缘深大断陷活动、产铀花岗岩体分布的双要素成矿动力学背景制约,青嶂山岩体应与诸广、贵东岩体具有相似的找矿前景。  相似文献   
5.
通过种子沉积法制备出Fe_3O_4/Mg(OH)_2复合材料并进行XRD、SEM测试分析。探究了氨水的浓度与加入速度、搅拌速度及等因素对磁性复合材料形貌的影响。氨水浓度与注入速度的降低,对氢氧化镁基体形貌的影响是相同的,但要使合成磁性复合材料形貌和四氧化三铁粒子在氢氧化镁中分散性均匀,应控制氨水浓度(ω=2.5%)或加入速度在一个合理的较低值。  相似文献   
6.
Magnetic reconnection (MR) is one of the most important physical processes for many dynamical phenomena in the universe. Magnetohydrodynamical (MHD) simulation is an effective way to study the MR process and the physical pictures related to the MR. With different parameter setups, we investigate the influences of the Magnetic Reynolds number and spatial resolution on the reconnection rate, numerical dissipation, and energy spectrum distribution in the MHD simulation. We have found that the magnetic Reynolds number Rm has definite impact on the reconnection rate and energy spectrum distribution. The characteristic time for entering into the non-linear phase will be earlier as the Reynolds number increases. When it comes to the tearing phase, the reconnection rate will increase rapidly. On the other hand, the magnetic Reynolds number affects significantly the Kolmogorov microscopic scale lko, which becomes smaller as Rm increases. An extra dissipation is defined as the combined effect of the numerical diffusion and turbulence dissipation. It is shown that the extra dissipation is dominated by the numerical diffusion before the tearing mode instability takes place. After the instability develops, the extra dissipation rises vastly, which indicates that turbulence caused by the instability can enhance the diffusion obviously. Furthermore, the energy spectrum analysis indicates that lko of the large-scale current sheet may appear at a macroscopic MHD scale very possibly.  相似文献   
7.
拉曼光谱是一种快速无损的分析手段,它既可观察样品的显微结构构造,也可分析样品的成分和结构。为了丰富多金属结核的岩石矿物学特征,文章对西太平洋某海山区的多金属结核样品进行了X射线粉末衍射分析和拉曼光谱分析。X射线分析结果显示该区域样品主要含有水羟锰矿、钡镁锰矿、斜长石、钙十字沸石和石英,显微构造主要有纹层状构造、柱状构造、树枝状构造、充填构造等。通过分析对比潮湿样品和烘干样品铁锰质矿物的拉曼特征谱峰,得出结核中水羟锰矿的特征谱峰位于490 cm~(-1)、570 cm~(-1)和626 cm~(-1)附近,钡镁锰矿的特征谱峰则位于640 cm~(-1)附近,与陆地上对应矿物的特征拉曼谱峰不同。结核中的钡镁锰矿结构不稳定,经过风干或者抛磨后部分产生相变,不同显微结构中,相变情况不同。经与RRUFF数据库比对,识别出钙十字沸石、斜长石等自形晶,多分布于结核最内层,往结核外层总体减少。矿物微晶多见铁锰质矿物微晶和钙十字沸石微晶,铁锰质矿物绕其向外生长。  相似文献   
8.
海洋沉积物黏土矿物相对含量计算存在多种计算方法,并不统一,限制了异源黏土矿物的整合和使用。文章选取了两种较为常见的计算方法,即Biscaye和国标中规定的计算方法,分别对东印度洋109个表层样品黏土矿物的相对百分含量进行计算,分析对比了两种方法计算结果之间的差异。结果显示,两种计算方法结果存在显著正相关,都能显示黏土矿物分布的变化趋势,4种黏土矿物相关系数由高到底分别为:蒙皂石0.986、伊利石0.974、绿泥石0.924、高岭石0.923。相对于Biscaye计算方法,国标计算方法会增加伊利石和高岭石的相对百分含量而降低蒙皂石和绿泥石的相对百分含量。两种计算方法黏土矿物的含量相关性较好,可以建立起相互数学转换关系式。但在不同的海区,由于矿物成因、结晶程度以及混层矿物的出现可能会使衍射峰形态发生改变,从而相关性系数和转换关系也会相应发生改变。  相似文献   
9.
As the two important components of shale, organic matter(OM) and clay minerals are usually thought to strongly influence the hydrocarbon generation, enrichment and exploitation. The evolution process of OM and clay minerals as well as their interrelationship over a wide range of thermal maturities are not completely clear. Taking Yanchang(T_3y), Longmaxi(S_1l) and Niutitang(?_1n) shales as examples, we have studied the microstructure characteristics of OM and clay minerals in shales with different thermal maturities. The effects of clay minerals and OM on pores were reinforced through sedimentation experiments. Using a combination of field emission scanning electron microscopy(FESEM) and low-pressure N_2 adsorption, we investigated the microstructure differences among the three shales. The results showed that both OM and clay minerals have strong effects on pores, and small mesopore(2–20 nm) is the dominant pore component for all three samples. However, the differences between the three samples are embodied in the distribution of pore size and the location. For the T_3y shale, clay minerals are loosely arranged and develop large amounts of pores, and fine OM grains often fill in intergranular minerals or fractures. Widespread OM pores distribute irregularly in S_1l shale, and most of the pores are elliptical and nondirectional. The ?_1n shale is characterized by the preferred orientational OM-clay aggregates, and lots of pores in the composites are in the mesopore range, suggesting that over maturity lead to the collapse and compaction of pores under huge pressure of strata. The results of the current research imply that with increasing thermal maturity, OM pores are absent at low maturity(T_3y), are maximized at high maturity(S_1l) and are destroyed or compacted at over-mature stage(?_1n). Meanwhile, clay minerals have gone through mineral transformation and orientational evolution. The interaction of the two processes makes a significant difference to the microstructure evolution of OM and clay minerals in shale, and the findings provide scientific foundation in better understanding diagenetic evolution and hydrocarbon generation of shale.  相似文献   
10.
Anatexis of metapelitic rocks at the Bandelierkop Quarry (BQ) locality in the Southern Marginal Zone of the Limpopo Belt occurred via muscovite and biotite breakdown reactions which, in order of increasing temperature, can be modelled as: (1) Muscovite + quartz + plagioclase = sillimanite + melt; (2) Biotite + sillimanite + quartz + plagioclase = garnet + melt; (3) Biotite + quartz + plagioclase = orthopyroxene ± cordierite ± garnet + melt. Reactions 1 and 2 produced stromatic leucosomes, which underwent solid‐state deformation before the formation of undeformed nebulitic leucosomes by reaction 3. The zircon U–Pb ages for both leucosomes are within error identical. Thus, the melt or magma formed by the first two reactions segregated and formed mechanically solid stromatic veins whilst temperature was increasing. As might be predicted from the deformational history and sequence of melting reactions, the compositions of the stromatic leucosomes depart markedly from those of melts from metapelitic sources. Despite having similar Si contents to melts, the leucosomes are strongly K‐depleted, have Ca:Na ratios similar to the residua from which their magmas segregated and are characterized by a strong positive Eu anomaly, whilst the associated residua has no pronounced Eu anomaly. In addition, within the leucosomes and their wall rocks, peritectic garnet and orthopyroxene are very well preserved. This collective evidence suggests that melt loss from the stromatic leucosome structures whilst the rocks were still undergoing heating is the dominant process that shaped the chemistry of these leucosomes and produced solid leucosomes. Two alternative scenarios are evaluated as generalized petrogenetic models for producing Si‐rich, yet markedly K‐depleted and Ca‐enriched leucosomes from metapelitic sources. The first process involves the mechanical concentration of entrained peritectic plagioclase and garnet in the leucosomes. In this scenario, the volume of quartz in the leucosome must reflect the remaining melt fraction with resultant positive correlation between Si and K in the leucosomes. No such correlation exists in the BQ leucosomes and in similar leucosomes from elsewhere. Consequently, we suggest disequilibrium congruent melting of plagioclase in the source and consequential crystallization of peritectic plagioclase in the melt transfer and accumulation structures rather than at the sites of biotite melting. This induces co‐precipitation of quartz in the structures by increasing SiO2 content of the melt. This process is characterized by an absence of plagioclase‐induced fractionation of Eu on melting, and the formation of Eu‐enriched, quartz + plagioclase + garnet leucosomes. From these findings, we argue that melt leaves the source rapidly and that the leucosomes form incrementally as melt or magma leaving the source dumps its disequilibrium Ca load, as well as quartz and entrained ferromagnesian peritectic minerals, in sites of magma accumulation and escape. This is consistent with evidence from S‐type granites suggesting rapid magma transfer from source to high level plutons. These findings also suggest that leucosomes of this type should be regarded as constituting part of the residuum from partial melting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号